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Abstract. We study different types of radiative decays involving f0(980) and a0(980) mesons within
a unified ChPT-based approach at one-loop level. Light scalar resonances, which are seen in the ππ,
πη and KK̄ channels of the φ(1020) radiative decays and in the J/ψ decays are responsible for key
questions of low-energy dynamics in the strong interaction sector, and the decays φ(1020)→ γa0(980),
φ(1020)→ γf0(980), a0(980)→ γγ and f0(980)→ γγ are of interest for current experimental programs in
Jülich, Frascati and Novosibirsk. From the theoretical point of view it is important to verify whether light
scalar mesons are members of some flavor octet or nonet. We find a value for the mixing angle dictated
by consistency with experiment and the coupling structures of the ChPT Lagrangian. The decay widths
f0(980)/a0(980)→ γρ(770)/ω(782), which have not been experimentally studied yet, are predicted. We also
obtain several relations between the widths, which hold independently of the coupling constants and which
represent a fingerprint of the model.

PACS. 11.30.Hv; 12.39.Fe; 13.30.Eg; 14.40.-n

1 Introduction

The scalar mesons a0(980) (I
G(JPC) = 1−(0++)) and

f0(980) (I
G(JPC) = 0+(0++)) have been discussed for

more than 30 years. The shapes of the ππ (and πη) in-
variant mass distributions in different reactions point to
these resonances. A promising source of information on
the scalar mesons are the radiative decays in which scalar
mesons are involved. Much experimental attention has
been paid so far to the processes φ(1020)→ γa0 [1] and
φ(1020)→ γf0 [2–4] due to the motivation put forward
in [5]. A recent example of a model describing such fea-
tures in the rare φ→ γS→ γπη (γππ) decays is the chiral
approach with derivative couplings [6]. Among other well-
known processes involving the scalar resonances one can
think of J/ψ→ φf0(980)→ φππ (and → φKK̄) studied
at BES [7] and nucleon–nucleon (as well as deuteron–
deuteron) reactions with various hadronic final states.
The transitions a0→ γγ and f0→ γγ are relevant for nu-
merous reactions, where two-photon interactions produce
miscellaneous hadronic final states. Many experiments in-
volving γγ→ ππ (or πη) have been carried out or are being
planned.
The properties of the scalar mesons are not well un-

derstood. Nevertheless, the dominant decay channels are
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known to be ππ for the f0 meson and πη for a0, and the
total widths are in between 40 and 100MeV. The decays to
strange mesons a0→KK̄ and f0→KK̄ are dynamically
allowed, though the masses of a0(980) and f0(980) may lie
slightly below the KK̄ threshold. The masses of a0(980)
and f0(980) are approximately equal.
The internal structure of the light scalar mesons is

also not clear. Recent advances in understanding of their
structure are presented in the review of [8]. Most studies
show that the light scalar meson structure cannot be ex-
plained in simple quark models. This is probably related
to the special role played by these mesons in the low-
energy dynamics of the strong interaction [9, 10]. Namely,
scalar fields can be viewed as the Higgs sector of the strong
interaction, i.e. their non-zero vacuum expectation value
leads to chiral symmetry breaking and directly reflect the
structure of the quark condensate in quantum chromody-
namics (QCD). Some authors emphasize the proximity of
the KK̄ threshold to the a0 and f0 masses, which favors
the presence of the molecular KK̄ component [11] (for re-
cent calculations implementing the molecular KK̄ model,
see [12–14].)
Another approach to light scalar meson features is uni-

tarized ChPT [15]. In this approach the inverse amplitude
method [16] was employed to describe elastic ππ, πη, Kη
and KK̄ scattering data. The radiative decays in ques-
tion were evaluated through the final state interaction of
the scattered particles. The unusual large-Nc behavior of
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scalar resonances was recently summarized in [17] (see also
references therein and the original paper [18]).
Thedecays f0/a0(980)→ γ ρ(770)/ω(782) are similar to

the decays φ→ γa0 (γf0). The interest in these processes
was initiated in [19]. Apparently they can be explained in
terms of the samematrix element (describing a processwith
vector (V ) and scalar (S) particles, and a photon in the
initial/final state) with SU(3) flavor modifications reflect-
ing the type of vector particles. The decays S→ γV may be
studied experimentally in Jülich (with ANKE and WASA
at COSY) [20] and possibly in Frascati [21] (with KLOE at
DAΦNE or its upgrade) and atBES.
Various phenomenological models [5, 6, 12–14,22–24]

have been applied to the calculation of these decays. At the
same time a consistent description in the framework of chi-
ral perturbation theory (ChPT) with pre-existing vector
and axial-vector mesons [25] is lacking. This is an effect-
ive theory of the strong and electromagnetic interactions
at energies below 1 GeV, and it has the symmetries of the
underlying QCD. Strictly speaking ChPT is a series ex-
pansion in p2/Λ2χ,m

2/Λ2χ, where p is the momentum, m is
the mass of the pseudoscalar mesons, and the chiral sym-
metry breaking scale Λχ is of order 1 GeV. Thus, formally,
the range of energies for the scalar mesons is on the border
of the applicability of ChPT. Nevertheless, it is clear that
a suitable effective Lagrangian for scalar mesons has to
havemuch in common with the ChPT Lagrangian, because
the coupling structures are guided by the chiral symme-
try. There are many successful applications of this theory
at energies about 1 GeV that are a useful background for
employing ChPT in the present problem.
In general, ChPT does not specify the internal struc-

ture of the interacting particles. The model [25] only as-
sumes that the scalar fields belong to a SU(3) flavor octet
and singlet. This Lagrangian is written down in Appen-
dices A and B; in particular, LA describes the interaction
of pseudoscalar and vector mesons, and LB the interaction
of scalar mesons with pseudoscalars. We test the singlet–
octet mixing scheme for the lightest scalar meson nonet

⎧
⎪⎨

⎪⎩

a0 = S3 ,

f0 = Ssing cos θ−S8 sin θ ,

σ = Ssing sin θ+S8 cos θ ,

(1)

where S3 is the neutral isospin-one, S8 is the isospin-zero
member of the flavor octet and Ssing is the flavor singlet. θ
is the octet–singlet mixing angle, and σ = f0(600). In par-
ticular, we are interested in whether a0(980) and f0(980)
suit for members of this nonet. In principle, this may not be
the case (see, for example, the argumentation in [26]), and
it therefore should be verified. Radiative decays may help
to clarify this important issue.
The present paper considers the decays S → γγ,

φ(1020)→ γS and S→ γV . We assume that the underly-
ing dynamics of all the above decays has much in common,
namely that the loops with pseudoscalar mesons form
the dominant mechanism. This assumption is consistently
implemented in the Lagrangian [25], and Sect. 2 presents
a calculation of the decay amplitudes. We prove cancella-
tion of divergences and gauge invariance of the amplitudes.

Along the calculations we use the dimensional regulariza-
tion method; see Appendix D for a brief overview of the
method and a list of the basic formulae. Some details of the
calculation of the loop integrals and their analysis are also
presented in Sect. 2.
There are six coupling constants in the Lagrangian (FV ,

GV , cd, cm, c̃d and c̃m), and an estimation of their values
is carried out in Sect. 3. Under the assumption of reson-
ance saturation, the coupling constants may be expressed
in terms of chiral LECs [25]. The available experimental
data provide certain constraints on these couplings.
After fixing the parameters we calculate the widths of

various decays with light scalar mesons and compare them
with the available data and predictions of other models
(Sect. 3).We compare pion- and kaon-loop contributions to
the decays with the f0 meson in the initial/final state and
demonstrate the importance of pion loops in f0→ γρ and
f0→ γγ decays.
The virtual photon case, which is important for fur-

ther applications of the present model, is outlined in
Appendix C.

2 Formalism for radiative decays amplitudes

2.1 One-loop diagrams and chiral counting

From the Lagrangianterms (A.1) and (B.4) one obtains the
sets of one-loop diagrams shown in Figs. 1, 2 and 3. In the
present approach we have no tree-level diagrams for the ra-
diative processes. Therefore the lowest-order amplitudes
consist of one-loop diagrams. The corresponding set of dia-
grams for a0/f0→ γγ decay with a pseudoscalar meson in
the loop is shown in Fig. 1. This set of diagrams is complete,
since it is obtained from a Lagrangian that carries a chiral
power not less than the chiral power of any diagram.
The following rules [27] are used to count the chiral

power of any diagram. These counting rules provide one
with a guiding idea of which diagrams should be included
and which should not, when forming a set of relevant di-
agrams at any given order. Pseudoscalar fields Φ, scalar
fields S and vector fields (in the tensor representation) ρµν ,
ωµν and φµν carry a zero chiral powerO(p0); a deriva-
tive or external source (like an electromagnetic field Bµ)
has a unit chiral powerO(p); the pseudoscalar-mesonmass
(mπ,mK) also carries a unit power O(p) (so that the mass
matrix χ in Appendix A is O(p2)). The propagator of the
pseudoscalar meson is counted as O(p−2).
All coupling constants in the Lagrangian (cd, cm, c̃d,

c̃m, FV and GV ) are O(p0), and the power of any vertex
is determined only by the structure of the corresponding
term in the Lagrangian. In addition, the loop integration
over particle momentum adds O(p4). Applying these rules
one can show that each diagram in Figs. 1–3 has a chiral
powerO(p4).

2.2 Radiative decays a0/f0→ γγ

Consider the amplitude of the decay a0/f0→ γγ. Let the
scalar meson have 4-momentum p, and let the photons
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Fig. 1. Diagrams for the decay of the scalar meson (dotted line) into two photons (wavy lines). Pseudoscalar mesons (dashed
lines) in the loops are (K+K−) for the a0(980) decays, and (K

+K−), (π+π−) for the f0(980) decays. Solid (non-derivative coup-
ling) and crossed (derivative coupling) blobs representO(p2) vertices. Arrows mark the places where form factors of pion and kaon
would arise for virtual photons (see discussion in Appendix C)

Fig. 2.Diagrams for the φ(1020) to γa0(980) or γf0(980) decays. Pseudoscalar mesons here are (K
+K−). Solid and crossed blobs

stand for O(p2) vertices; the latter indicate derivative coupling terms

Fig. 3. Diagrams for f0(980)/a0(980)→ γρ(770)/ω(782) decays. The pseudoscalar mesons in the loops are (K
+K−) for all de-

cays, and (π+π−, K+K−) for f0(980)→ γρ(770). Solid and crossed blobs stand for O(p
2) vertices; the latter are derivative

coupling terms
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have polarization vectors ε
(1)
µ and ε

(2)
ν , and 4-momenta q

µ
1

and qν2 . Suppose that a positive charge runs clockwise in
the loop. First, we write down the amplitude for the first
three diagrams (a–c), as this set of diagrams is often used
in various approaches for radiative decays [5, 6, 19].
The invariant amplitude Mabc corresponding to dia-

grams (Fig. 1a–c) is expressed through the tensor T µνS(P )γγ :

−iMabc = ε
(1)∗
µ ε(2)∗ν T µνS(P )γγ . (2)

The indices S(P ) indicate that the scalar meson of type S
decays in two photons via a loop consisting of two inter-
mediate pseudoscalar mesons of type P with massmP , i.e.
S(P ) = {a0(KK), f0(KK), f0(ππ)}.
Explicitly, we find

T µνS(P )γγ =−
e2gSPP

f2π

{

2gµν
∫
d4l

(2π)4
∆l∆l−p

+Iνµ(q1, q2)+ I
µν(q2, q1)

}

, (3)

Iνµ(q1, q2)≡

∫
d4l

(2π)4
(2l−p− q1)

ν(2l− q1)
µ

× i∆l∆l−p∆l−q1 ,

where ∆l ≡ i(l2−m2P )
−1. For the gSPP we refer to the La-

grangian (B.4) in Appendix B. Changing the integration
variable l′ = p− l (and l′ = p+ q1− l) and assuming that
the possible divergence of the integrals is not higher than
logarithmic, one can prove the gauge invariance of the am-
plitude:

q1µT
µν
S(P )γγ = q2νT

µν
S(P )γγ = 0 . (4)

Making use of the change l′ = p− l we deduce a useful
relation:

Iνµ(q1, q2) = I
µν(q2, q1) , (5)

which is connected with Bose symmetry of the final
photons.
By means of Feynman parametrization and the dimen-

sional regularization method (see Appendix D) the expres-
sion (3) is reduced to

T µν
S(P )γγ =

−2ie2

(4π)2
gSPP

f2π

{

gµν
∫ 1

0

dx ln
[
m2P −p

2x(1−x)
]

−2gµν
∫∫ 1

0

xdxdy ln[C(x, y; q1, q2)]

−

∫∫ 1

0

xdxdy
Aνµ(x, y; q1, q2)

C(x, y; q1, q2)

}

, (6)

Aνµ(x, y; q1, q2) = (q1[2x(1−y)−2]+2xyp− q2)
ν

× (q1[2x(1−y)−1]+2xy p)
µ ,

C(x, y; q1, q2) = q
2
1x(x−1)(1−y)+p

2xy(x−1)

− q22x
2y(1−y)+m2 .

The divergent parts of diagrams (Fig. 1a–c) cancel each
other.
For the real photons in question, we have

q21 = q
2
2 = 0 ,

ε(1)µ q
µ
1 = ε

(2)
µ q

µ
2 = 0 .

These conditions simplify (6) to

T µν
S(P )γγ =

−4ie2

(4π)2
gSPP

f2π

(

gµν −
qν1 q

µ
2

q1 · q2

)

Ψ
(
m2P ; p

2; 0
)
.

(7)

Here we define

Ψ
(
m2P ; p

2; 0
)
≡

∫∫ 1

0

xdxdy

[

1+
m2P

p2xy(x−1)

]−1

=
1

2
−
m2P
p2

∫ 1

0

dx

x−1
ln

[

1+x(x−1)
p2

m2P

]

,

(8)

ReΨ
(
m2P ; p

2; 0
)
=
1

2
−
m2P
p2

∫ 1

0

dx

x−1
ln

∣
∣
∣
∣1+x(x−1)

p2

m2P

∣
∣
∣
∣ ,

ImΨ
(
m2π; p

2; 0
)
= π
m2π
p2
ln

∣
∣
∣
∣
∣
∣

1+
√

1−4m
2
π
p2

1−
√

1−4m
2
π
p2

∣
∣
∣
∣
∣
∣
,

ImΨ
(
m2K ; p

2; 0
)
= 0 .

The integrals Ψ
(
m2P ; p

2; 0
)
are calculated numerically and

presented in Table 1. The scalar-meson invariant mass

Table 1. Values of the loop integrals. The assumed physi-
cal values of the scalar meson masses are Mf0 = 980MeV and
Ma0 = 984.7 MeV

Ψ
(
m2K ;M

2
a0 ;M

2
φ

)
= 0.0749+0.244i

Ψ
(
m2K ;M

2
f0
;M2φ

)
= 0.1295+0.216i

Ψ
(
m2π;M

2
a0 ; 0
)
= 0.5510−0.244i

Ψ
(
m2K ;M

2
a0 ; 0
)
= −0.63

Ψ
(
m2π;M

2
f0
; 0
)
= 0.5507−0.246i

Ψ
(
m2K ;M

2
f0
; 0
)
= −0.57

Ψ
(
m2π;M

2
σ; 0
)
= 0.3545−0.5664i

Ψ
(
m2K ;M

2
σ; 0
)
= −0.0529

Ψ
(
m2π;M

2
f0
;M2ρ

)
= 0.128−0.0169i

Ψ
(
m2K ;M

2
a0 ;M

2
ρ

)
= −0.4048

Ψ
(
m2K ;M

2
a0 ;M

2
ω

)
= −0.3988

Ψ
(
m2K ;M

2
f0
;M2ρ

)
= −0.3466

Ψ
(
m2K ;M

2
f0
;M2ω

)
= −0.3407
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(p2)1/2 is equal to Ms – the mass of f0, a0 (and σ for
completeness), while mP is equal to the mass of the pseu-
doscalar meson π orK in the loop.1

Now we consider the diagrams in Fig. 1d–i. At first
glance, these diagrams, which include a derivative coupling
for scalar mesons,2 are more complicated due to momen-
tum dependence of the SPP vertex. In fact, these diagrams
can be treated similar to the previous case. To demonstrate
this let us define

−iM(d–i) = ε
(1)
µ ε

(2)
ν T̂

µν
S(P )γγ , (9)

where the symbol “hat” is used hereafter to indicate the
derivative coupling. Next we use the identity

l(l−p)∆l∆l−p =
i

2

(
∆l+∆l−p+ i(p

2−2m2P )∆l∆l−p
)
,

and change the integration variables as above in order to
combine the six terms inM(d–i) in such a way that the con-
tribution of diagram (i) cancels the contribution of (f), and
diagrams (g) and (h) are cancelled by a part of (d) and
a part of (e). In this way, the derivative coupling amplitude

T̂ µνS(P )γγ is related to the non-derivative coupling amplitude

T µνS(P )γγ

ε(1)µ ε
(2)
ν T̂

µν
S(P )γγ =

ĝSPP

gSPP

(
m2P −p

2/2
)
ε(1)µ ε

(2)
ν T

µν
S(P )γγ .

Combining the contributions of all diagrams in Fig. 1,
one obtains the totalO(p4) invariant amplitude

−iMa0→γγ =
−4ie2

(4π)2f2π
Ψ
(
m2K ; p

2; 0
)
AK

(
p2
)

×

(

ε(1)∗ · ε(2)∗−
ε(1)∗ · q2ε(2)∗ · q1

q1 · q2

)

,

(10)

−iMf0→γγ =
−4ie2

(4π)2f2π

[
Bπ(p

2)Ψ
(
m2π; p

2; 0
)

+BK(p
2)Ψ

(
m2K ; p

2; 0
)]

×

(

ε(1)∗ · ε(2)∗−
ε(1)∗ · q2ε(2)∗ · q1

q1 · q2

)

,

(11)

where

AK(p
2)≡ ĝaKK(m

2
K −p

2/2)+ gaKK ,

BK(p
2)≡ ĝfKK(m

2
K −p

2/2)+ gfKK ,

Bπ(p
2)≡ ĝfππ(m

2
π−p

2/2)+ gfππ . (12)

1 When working with the integrals (8) it is convenient to use

the identity
∫ 1
0 (1−2x)f(y)dx= 0 for any function f(y), where

y = x(1−x).
2 We also include here diagram (i), though it has no deriva-
tive coupling in the SPPγγ vertex. This is convenient due to its
cancellation with the contribution of diagram (f).

2.3 Radiative decays φ(1020)→ γa0/f0

Let the vector meson φ(1020) with momentum Q decay
into a scalar meson a0(980) (or f0(980)) with momentum
p and a photon with momentum q, i.e. φ(Q)→ γ(q)+
a0/f0(p). Diagrams corresponding to these reactions are
shown in Fig. 2.
Let the polarization vector for the φ-meson be Eµ, and

that for the photon εν . Apparently q
νεν = 0 andQ

µEµ = 0.
We describe the vector meson φ(1020) by the antisymmet-
ric tensor field carrying the indices µλ. Thus we employ the
normalization for the one-particle matrix element [25]

〈0|φµλ(0)|φ,Q〉= iM
−1
φ [QµEλ−QλEµ] . (13)

The invariant amplitude reads

−iMφ→γS = ε
∗
ν i
QµEλ−QλEµ

Mφ

(
T µλνφ→γS+ T̂

µλν
φ→γS

)
,

(14)

where the tensor with “hat” for the diagrams (a–d) in
Fig. 2 is

T̂ µλνφ→γS = T̂
µλν
a + T̂ µλνb + T̂ µλνc + T̂ µλνd ,

T̂ µλνa =
−ieGV ĝSKK√

2f4π

∫
d4l

(2π)4
(
Qµlλ− (µ↔ λ)

)

× (2l−Q)ν ∆l∆l−Q ,

T̂ µλνb =
−ieĝSKK√
2f4π

∫
d4l

(2π)4

×

[(

GV Q
µ+
1

2
(FV −2 GV )q

µ

)

gνλ− (µ↔ λ)

]

× l (l−Q+ q)∆l∆l−Q+q ,

T̂ µλνc = T̂ µλνd

=
eGV ĝSKK√
2f4π

∫
d4l

(2π)4
(
Qµlλ− (µ↔ λ)

)

× (2l− q)ν (l− q)(l−Q)∆l∆l−q∆l−Q , (15)

and the tensor without “hat” for diagrams (e–g) in Fig. 2
reads

T µλνφ→γS = T
µλν
e +T µλνf +T µλνg ,

T µλνe =
−iegSKK√
2f4π

∫
d4l

(2π)4
∆l∆l−Q+q

×

[

gνλ
(

GVQ
µ+
1

2
(FV −2GV )q

µ

)

− (µ↔ λ)

]

,

T µλνf = T µλνg

=
−eGV gSKK√

2f4π

∫
d4l

(2π)4
∆l∆l−q∆l−Q (2l− q)

ν

×
(
Qλlµ− (µ↔ λ)

)
. (16)

The consideration shows that divergent parts of the am-
plitudes (15) and (16) that do not cancel are proportional
to (FV −2GV )(gνλqµ− gνµqλ). Therefore, we employ the
relation

FV = 2GV (17)
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between the electromagnetic and strong coupling con-
stants of the vector mesons (see Appendix A) in order to
make the amplitudes finite. Actually this relation does not
follow from the chiral symmetry. However, it naturally ap-
pears in alternative approaches: the hidden local gauge
symmetry model [28] and massive Yang–Mills theory [29].
This aspect has been addressed in [30]. In Appendix A we
discuss the accuracy of (17) based on experiment.
Making use of (17) and the identities

i(∆l−q+∆l−Q) =∆l−q∆l−Q
[
p2−2m2K+2(l− q)(l−Q)

]
,

i(∆l+∆l−Q+q) =∆l∆l−Q+q
[
p2−2m2K+2l(l−Q+ q)

]

in (15), one can prove that

(

T̂ µλνφ→γS−
ĝSKK

gSKK

(

m2K −
p2

2

)

T µλνφ→γS

)

× ε∗ν i
QµEλ−QλEµ

Mφ
= 0 . (18)

Finally,

−iMφ→γS =

(

1+
ĝSKK

gSKK

(

m2K −
p2

2

))

×T µλνφ→γSε
∗
ν i
QµEλ−QλEµ

Mφ
. (19)

In the calculation of the amplitude, Feynman param-
etrization and the dimensional regularization method are
applied (Appendix D). Then (19), with the use of (16),
reads

−iMφ→γS =
−ieGV gSKKQ2√
2f4π(4π)

2Mφ

(

1+
ĝSKK

gSKK

(

m2K −
p2

2

))

× [4(Q · ε∗)(q ·E)I1− (ε
∗ ·E)(I2−2I3)] ,

(20)

where

I2 =

∫ 1

0

dx ln
(
m2K−p

2x(1−x)
)
,

I3 =

∫∫ 1

0

xdxdy

× ln
(
m2K−Q

2x(1−x)+2xy(1−x)Q · q
)
,

I1 =

∫∫ 1

0

xdxdy
xy(1−x)

m2K −Q
2x(1−x)+2xy(1−x)Q · q

=
1

4Q · q
(I2−2I3) , (21)

I2−2I3 = 1

−

∫ 1

0

dx
m2K −M

2
φx(1−x)

(M2φ−p
2)x(1−x)

ln
m2K−p

2x(1−x)

m2K−M
2
φx(1−x)

≡ 2Ψ
(
m2K , p

2,M2φ
)
. (22)

In terms of Ψ(m2K , p
2,M2φ), the invariant amplitude (20)

reads

−iMφ→γS = i

√
2eMφGV
f4π(4π)

2
2Ψ

(
m2K , p

2,M2φ
)

×

[

ε∗ ·E−
1

Q · q
(Q · ε∗)(q ·E∗)

]

×

[
AK(p

2) for φ→KK→ a0γ
BK(p

2) for φ→KK→ f0γ
.

(23)

Compare definition (22) with that of Ψ(m2P , p
2, 0)

in (8). The real and imaginary parts of Ψ(m2K , p
2,M2φ) at

p2 =M2s are

ReΨ
(
m2K ,M

2
s ,M

2
φ

)

=
1

2
−
1

2

∫ 1

0

dx
m2K−M

2
φx(1−x)

(M2φ−M
2
s )x(1−x)

ln

∣
∣
∣
∣
∣

m2K −M
2
sx(1−x)

m2K −M
2
φx(1−x)

∣
∣
∣
∣
∣
,

ImΨ
(
m2K ,M

2
s ,M

2
φ

)

=
πM2φ
M2φ−M

2
s

⎛

⎜
⎜
⎝

√
1

4
−
M2K
M2φ
+
M2K
M2φ
ln

∣
∣
∣
∣
∣
∣
∣
∣

1−

√

1−4
M2
K

M2
φ

1+

√

1−4
M2
K

M2
φ

∣
∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎟
⎠ .

(24)

Numerical calculation of Ψ(m2K ,M
2
s ,M

2
φ) leads to the

values shown in Table 1 (see also [5] for an analytic expres-
sion of the integral (22)).

2.4 Radiative decays f0/a0→ γ ρ/ω

The decay of a scalar meson into a vector meson with ra-
diation of a photon (f0/a0→ γρ/ω) in the lowest order is
represented by the O(p4) diagrams shown in Fig. 3. The
vertices follow from LA in (A.1) and LB in (B.4). The
structure of the matrix element for these decays is very
similar to that in (23). One can replace φ(1020) by ρ(770)
(or ω(782)), take into account the flavor SU(3) factor in the
V PP vertices, and select the pseudoscalar particles in the
loops allowed by the symmetries of the strong interaction.
For the relevant SU(3) relations, see Appendix A. Taking
into account that a0(980) and ω(782) do not couple to two
pions, one is left with K+K−, a loop for the a0→ γV and
f0→ γω decays, and both the π+π− and K+K− loops for
the f0→ γρ decay.
The matrix elements read

−iMa0→γV =
−ieMVGV
f4π(4π)

2

[

ε∗ ·E∗−
1

Q · q
(Q · ε∗)(q ·E∗)

]

×2AK(p
2)Ψ

(
m2K ; p

2;M2V
)
, (25)

−iMf0→γρ =
−ieMρGV
f4π(4π)

2

[

ε∗ ·E∗−
1

Q · q
(Q · ε∗)(q ·E∗)

]

×2
(
BK(p

2)Ψ
(
m2K ; p

2;M2ρ
)

+2Bπ(p
2)Ψ

(
m2π; p

2;M2ρ
))
, (26)
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−iMf0→γω =
−ieMωGV
f4π(4π)

2

[

ε∗ ·E∗−
1

Q · q
(Q · ε∗)(q ·E∗)

]

×2BK(p
2)Ψ

(
m2K ; p

2;M2ω
)
, (27)

where the notation for the momenta and the polarization
vectors is the same as in Sect. 2.3.
The loop integrals Ψ

(
m2π; p

2;M2V
)
and Ψ

(
m2K ; p

2;M2V
)

can also be defined by (22). Their numerical values are
shown in Table 1.
To establish correspondence with the results of [22] we

can write the loop integrals for the f0/a0→ γρ/ω diagrams
in Fig. 3 in the form

ReΨ
(
m2π;M

2
s ;M

2
ρ

)
=
1

2
−
1

a− b

×

(

ln2
1+

√
1−4/b

1−
√
1−4/b

− ln2
1+

√
1−4/a

1−
√
1−4/a

)

+
a

2(a− b)

(
√
1−4/b ln

1+
√
1−4/b

1−
√
1−4/b

−
√
1−4/a ln

1+
√
1−4/a

1−
√
1−4/a

)

, (28)

ImΨ
(
m2π;M

2
s ;M

2
ρ

)
=
π

a− b

×

(

ln
1+

√
1−4/b

1−
√
1−4/b

− ln
1+

√
1−4/a

1−
√
1−4/a

)

−
πa

2(a− b)

(√
1−4/b−

√
1−4/a

)
, (29)

with a=M2ρ/m
2
π and b=M

2
s /m

2
π for the pions in the loop.

For the kaons in the loop, one finds

Ψ
(
m2K ;M

2
s ;M

2
V

)
=
1

2
+
1

a− b

(

arcsin2
√
b

2
−arcsin2

√
a

2

)

+
a

a− b

(
√
4/b−1arcsin2

√
b

2

−
√
4/a−1arcsin2

√
a

2

)

, (30)

where a =M2V /m
2
K and b =M2s /m

2
K . The numerical

values obtained from these analytic expressions agree with
those in Table 1 obtained from direct numerical integra-
tion. For the integrals (8) and (22) one can also deduce
analytic expressions from [22] by choosing the appropriate
a and b.

3 Results and discussion

3.1 Widths and estimates for chiral couplings

First of all there are direct decays, which can be described
from (B.4) at tree level. They represent the dominant chan-
nels: a0→ πη for isotriplet and f0→ ππ for isosinglet scalar

mesons; we have

Γa0→πη =
1

8πp2

√(
p2+m2π−m

2
η

)2

4p2
−m2π

∣
∣Aπη(p

2)
∣
∣2

f4π
,

(31)

Γf0→ππ =

(

1+
1

2

)
1

8πp2

√
p2/4−m2π

1

f4π

∣
∣Bπ(p

2)
∣
∣2 ;

(32)

here Aπη(p
2) is introduced by analogy with (12)

Aπη(p
2)≡ ĝaπη

(
m2η+m

2
π−p

2
)
/2+ gaπη , (33)

and for the decays a0→KK̄ and f0→KK̄ we have

Γa0→KK̄ = 2
1

8πp2

√

p2/4−m2K
1

f4π

∣
∣AK(p

2)
∣
∣2 , (34)

Γf0→KK̄ = 2
1

8πp2

√

p2/4−m2K
1

f4π

∣
∣BK(p

2)
∣
∣2 . (35)

The invariant mass of the scalar meson is
√
p2.

For the decays into KK̄ in (34) and (35) one includes
the factor 2 (as KK̄ =K+K−,K0K̄0), and (1+1/2(2×
1/2)2) = 3/2 for ππ in (32): 1 is from the charged pions,
1/2 is from the identity of the neutral pions, (1/2)2 is be-
cause the neutral pions interact two times weaker than the

charged ones (
→
π
2
= π0π0+2π+π−), and 2 is the symmetry

factor in the vertex with two identical neutral pions.
The widths of our premium interest are built up of

AK(p
2), BK(p

2) and Bπ(p
2) (12), the loop integrals Ψ and

phase-space factors. Thus, through the relations (12), they
depend on the Lagrangian couplings cd, cm, c̃d and c̃m and
the singlet–octet mixing angle θ for the scalar mesons (see
Appendix B).
The widths for the a0→ γγ and f0→ γγ decays read

Γa0→γγ =
1

32π
√
p2

e4

8π4f4π

∣
∣AK(p

2)Ψ
(
m2K ; p

2; 0
)∣
∣2 ,

(36)

Γf0→γγ =
1

32π
√
p2

e4

8π4f4π

∣
∣BK(p

2)Ψ
(
m2K ; p

2; 0
)

+Bπ(p
2)Ψ

(
m2π; p

2; 0
)∣
∣2 . (37)

In deriving (36) and (37) the formula for the width

ΓS→γγ = 1/(2×16πMs) |MS→γγ |
2

(38)

is used, with the amplitude defined in (10) and (11), and
there is a symmetry factor 1/2 for two identical photons
in the final state. Further, the sum over the polarization
states λ of the photon is performed using

∑

λ=±1

ε(λ)µ ε
(λ)
ν
∗→−gµν , (39)

under the condition that the polarization vector is con-
tracted with the conserved current.
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Table 2. Particle properties (data from PDG [32]) that are needed in the calculations

Particle IG(JPC) Mass Width Major hadronic
(MeV) (MeV) decay channels

a0(980) 1−(0++) 984.7±1.2 50–100 πη

f0(980) 0+(0++) 980±10 40–100 ππ

σ = f0(600) 0+(0++) [32] 400–1000 600–1000 ππ

σ = f0(600) 0+(0++) [33, 34] 513±32 335±67 ππ

π± 1−(0−) 139.57018±0.00035 mean life 2.6×10−8 s
K± 1/2(0−) 493.677±0.016 mean life 1.24×10−8 s π±π0

φ(1020) 0−(1−−) 1019±0.019 4.26 K+K−, K0LK
0
S,

ρπ+3π

The widths for the φ(1020) meson decays are

Γφ→γa0 =
1

4πMφ

2

3

(

1−
p2

M2φ

)[√
2eMφGV
f4π(4π)

2

]2

×
∣
∣AK(p

2)Ψ
(
m2K , p

2,M2φ
)∣
∣2 , (40)

Γφ→γf0 =
1

4πMφ

2

3

(

1−
p2

M2φ

)[√
2eMφGV
f4π(4π)

2

]2

×
∣
∣BK(p

2)Ψ
(
m2K , p

2,M2φ
)∣
∣2 . (41)

Equations (40) and (41) are derived from the general ex-
pression

Γφ→γa0/f0 =
|Mφ→γS |2

16πMφ

(

1−
M2s
M2φ

)

, (42)

with the assumption (17). The amplitudeMφ→γS is given
in (23). The factor of 2/3 in (40) and (41) comes from the
sum over the photon polarizations and the average over the
vector-meson polarizations λ by means of

∑

λ=0,±1

E(λ)µ E
(λ)
ν
∗ =−gµν +

QµQν

M2φ
. (43)

The widths for the scalar meson decay into a photon
and a vector meson have the form

Γa0→γρ/ω =
1

2π
√
p2

(

1−
M2ρ/ω

p2

)[
eMρ/ωGV

f4π(4π)
2

]2

×
∣
∣
∣AK(p

2)Ψ
(
m2K , p

2,M2ρ/ω

)∣
∣
∣
2

, (44)

Γf0→γρ =
1

2π
√
p2

(

1−
M2ρ
p2

)[
eMρGV

f4π(4π)
2

]2

×
∣
∣BK(p

2)Ψ
(
m2K , p

2,M2ρ
)

+2Bπ(p
2)Ψ

(
m2π, p

2,M2ρ
)∣
∣2 , (45)

Γf0→γω =
1

2π
√
p2

(

1−
M2ω
p2

)[
eMωGV

f4π(4π)
2

]2

×
∣
∣BK(p

2)Ψ
(
m2K , p

2,M2ω
)∣
∣2 . (46)

Table 3. Decay data

Γφ(1020)→γf0
Γφ,tot

= (4.40±0.21)×10−4 [32]
Γφ(1020)→γa0
Γφ,tot

= (7.6±0.6)×10−5 [32]
Γφ(1020)→γf0
Γφ(1020)→γa0

= 6.1±0.6 [32]

Γa0→γγ = 0.30±0.10 keV [32]

Γf0→γγ = 0.31
+0.08
−0.11 keV [32]

Γa0→ηπΓa0→γγ
Γa0,tot

= 0.24+0.08−0.07 keV [32]

Γf0→ππ = 34.2
+22.7
−14.3MeV [31]

Γf0→γγ = 0.205
+0.242
−0.2 keV [31]

The expressions (44)–(46) follow from

ΓS→γV =
1

16πMs

(

1−
M2V
M2s

)

|MS→γV |
2
, (47)

where the scalar meson mass isMs, the vector-mesonmass
MV , and the matrix element M is given in (25), (26)
and (27), respectively.
Let us discuss the difficulties one faces when trying to

use (31)–(41) for fixing the couplings cd, cm, c̃d and c̃m and
the mixing angle θ. It is clear that the accuracy and even
the existence of the relevant experimental data are very im-
portant. The particle properties are presented in Table 2
and the known decay widths in Table 3 (the latter contains
also very recent data from KEK [31]; however, the errors
are still too large).
At present there is a big ambiguity in the mass of the

σ = f0(600) meson [32] (although one notices smaller er-
rors in the reference from CLEO [33, 34] in the 4th line
in Table 2, given for overview purposes only). For that rea-
son we decided not to use information on σ = f0(600) in the
coupling estimation or in the prediction of the width.
Strictly speaking (34) and (35) are valid if the invari-

ant mass of the scalar meson
√
p2 is larger than the pair

production threshold 2mK . In fact, the physical mass
lies below threshold, i.e. 2mK >Mf0 ,Ma0 (Table 2). This
makes it impossible to use (34) and (35) directly in the fit-
ting procedure (in principle, one can use an approximate
method [35]).
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Table 4. Chiral couplings and mixing angle

Bπ (10
7MeV3) 1.029 1.029 4.96 4.96

cd (MeV) −6.39 −52.57 −41.67 −264.37
cm (MeV) −58.83 −13.15 −23.93 196.37
θ (for µ=+1) −7.329◦ 46.271◦ −7.329◦ 46.271◦

θ (for µ=−1) −172.671◦ 133.729◦ −172.671◦ 133.729◦

From Table 3 one sees that the precision of the estimate
for Γa0→πη depends on the accuracy with which the total
a0 width Γa0,tot is known, as only the ratio

Γa0→ηπΓa0→γγ

Γa0,tot
(48)

is measured [32]. Unfortunately, Γa0,tot has a large experi-
mental error and therefore extraction of Γa0→πη from (48)
leads to a large error. Thus, this information should not be
used in the analysis.
Furthermore, formally (36) and (40) are not indepen-

dent as they are expressed through the same factor AK .
We prefer to use (36), because of the non-trivial assump-
tion (17) for the couplings used in the derivation of (40).
For realistic values of FV and GV the relation (17) is satis-
fied only approximately (see Appendix A).
From the above reasoning, it becomes clear that fixing

the five parameters in question is not an easy task. There-
fore, we reduce the number of independent parameters
from five to three by applying the large-Nc relations (B.2).
These relations are briefly discussed in Appendix B. Then
to find the values of cd, cm and θ one can use (36), (37)
and (41).
In the analysis below we take the masses of a0(980) and

f0(980) equal and put
√
p2 ≈ 980MeV. Let AK , BK and

Bπ be our estimates forAK(M
2
a0
),BK(M

2
f0
) andBπ(M

2
f0
).

Applying the constraint (B.2) to (12), we find that the
scalar mixing angle θ satisfies the equation

4µ cos θ+
√
2 sin θ =

√
6
BK

AK
, (49)

where µ = ±1 stands for the two possible choices of sign
in (B.2). For the coupling constants

cd =

√
2

p2 (m2K−m
2
π)

(
m2πAK −m

2
KRBπ

)
,

cm =
−1

√
2p2 (m2K −m

2
π)

×
((
p2−2m2π

)
AK −

(
p2−2m2K

)
RBπ

)
, (50)

where

R−1 ≡
BK

AK
−
√
3 sin θ . (51)

The values of AK , BK and Bπ in (12), extracted
from (36), (37) and (41) and experiment are

BK ≈ 3.4716×10
7MeV3 ,

Bπ ≈ (1.029 or 4.96)×10
7MeV3 ,

AK ≈ 2.2456×10
7MeV3 , (52)

(here ImBπ ≡ 0 is assumed). Inserting these values in (49)
and (50), one obtains the couplings and mixing angle
in Table 4. The relation between the mixing angle θ for
µ=+1 and µ=−1 is discussed in Appendix B.

3.2 Analysis of the loop integrals

Here we analyze the dependence of the loop integrals (8),
(22), (28)–(30) on the scalar meson invariant mass. Firstly,
such dependences are important for processes in which the
off-shell scalar resonances enter, i.e. for any scalar meson
production and its subsequent decay to γγ or γρ/ω. Sec-
ondly, the masses of the a0 and f0mesons have not yet been
accurately established. New experimental results may con-
siderably alter the existing values and it is important to
know how results of an approach depend on the masses.
Notice that our definition of the loop integral Ψ auto-

matically includes the loop kinematic factors, i.e. Ψ = (a−
b)I(a, b) in terms of an analytic approach [22]. The quantity
|Ψ |2 is convenient in the analysis of the loop contribution to
the decay probabilities (10), (11), (23) and (25)–(27).
Figure 4 shows the dependence of |Ψ |2 on the scalar-

meson invariant mass. This figure does not include any
possible interference effects between the pion and the kaon
loops. From Fig. 4c one sees that the pion contribution to
the f0→ γγ decay turns out to be as large as the kaon one.
The loop integrals crucially depend on the pseudoscalar
threshold and the relation between the masses of the pseu-
doscalar and vector particles. Especially the dependences
for the kaon loops are complex due to the proximity of the
KK̄ threshold. The two dotted vertical lines in Fig. 4 show
the physical masses of the scalar mesons. It is seen that
the kaon-loop contribution rapidly changes near the KK̄
threshold in the vicinity of Ma0 (Mf0); therefore, an error
in the mass value may cause drastic changes in the KK̄
contribution.
Note that similar loop integrals for φ→ γa0/f0 and

a0/f0→ γρ/ω decays were analyzed before in [5, 19, 22].
In particular, the authors of [19] concluded that the pion
loops gave a negligible contribution to the decays.
In this connection we stress that for any observable not

only the loop integrals but also the couplings matter. Thus,
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Fig. 4. Comparison of loop integrals squared, |Ψ |2. Solid line is drawn for kaon loop, dashed line for pion loop. Vertical dotted
lines mark assumed physical values of the scalar meson mass (Mf0 andMa0). The two solid lines in (b) account for the different
masses of the ρ and ω mesons. Interference between kaon and pion loops is not included

it is important to compare the pion and kaon contributions
taking into account the corresponding coupling constants
as well as interference effects. Figure 5 shows the ratio of
the KK̄ contribution and the total KK̄+ππ contribution
calculated from (11), (26) and Table 1. This ratio exhibits
the effect of interference between the pion and kaon loops
and depends on the ratio BK/Bπ. Our estimates for the
couplings lead to BK/Bπ = 3.37, and the arrows in Fig. 5
mark the values of the relative kaon contribution

∣
∣
∣
∣
∣
∣

BKΨ
(
m2K ,M

2
f ,M

2
ρ

)

2 BπΨ
(
m2π,M

2
f ,M

2
ρ

)
+BKΨ

(
m2K ,M

2
f ,M

2
ρ

)

∣
∣
∣
∣
∣
∣

2

= 1.635 ,

∣
∣
∣
∣
∣
∣

BKΨ
(
m2K ,M

2
f , 0

)

BπΨ
(
m2π,M

2
f , 0

)
+BKΨ

(
m2K ,M

2
f , 0

)

∣
∣
∣
∣
∣
∣

2

= 1.915 ,

to the decays f0→ γρ and f0→ γγ, respectively.
The results in Fig. 4a for the φ decays strongly favor the

kaon loops compared to the pion loops. That would be an
argument, additional to the OZI suppression rule, for not
using pion loops for the φ decays. For other processes Fig. 5
gives an adequate measure of the pion–kaon concurrence.
In f0→ γρ decay omitting the pion loops would lead to
a≈ 60% overestimate of the width. The pion loops are very
important in the two-photon decay of f0: they reduce the
decay rate by a factor of 1.9.

3.3 Model predictions

In the present model two types of predictions are obtained.
On the one hand, the observables depend on the values of
the model parameters, and thus can be evaluated after spe-
cific values are chosen.

Fig. 5. Relative kaon loop contribution,
∣∣(KK̄)/(π+π−

+KK̄)
∣∣2, to (11) and (26) versus the ratio BK/Bπ . Curves (b)

and (c) correspond to the decays f0→ γρ and f0→ γγ, respec-
tively (see also the legend in Fig. 4). Our fit gives BK/Bπ =
3.37

On the other hand, several ratios of the widths turn out
to be independent of specific values of the couplings cm,
cd, c̃m, c̃d and angle θ. We find three such ratios, which
are constant in the present model for any values of these
parameters:

Γa0→γγ

Γφ→γa0
= 0.422

=
3e2f4πMφ

G2VMa0

(
M2φ−M

2
a0

)

∣
∣
∣
∣
∣
∣

Ψ
(
m2K ;M

2
a0
; 0
)

Ψ
(
m2K ;M

2
a0
;M2φ

)

∣
∣
∣
∣
∣
∣

2

.

(53)



S.A. Ivashyn, A.Y. Korchin: Radiative decays with light scalar mesons and singlet–octet mixing in ChPT 99

Table 5. Strong decays of the scalar mesons

Our estimate (I) Estimate (II) Estimate (III) Exp. value [32]

cd, MeV −6.38 ±32 ±32 −
cm, MeV −58.83 ±42 ±42 −
θ −7.33◦ −35.26◦ 54.73◦ −

Γa0→πη , MeV 14.2 172.4 172.4 −
Γf0→ππ, MeV 41.8 775.7 7.4×10−6 34.2+22.7−14.3

Γa0,tot, MeV 17.8 215.4 215.4 50–100

Table 6.Model predictions and available data for the electromagnetic decays. (An asterisk ∗ marks the experimental values, used
for the extraction of the couplings. For the couplings used in columns (I), (II) and (III), see Table 5)

Observable Our est. (I) Est. (II) Est. (III) [19] (IV) [24] (Va) [24] (Vb) Exp. value [32]

Γφ→γa0
Γφ,tot

, 10−4 1.67 2.13 2.13 1.4 − − (7.6±0.6)×10−1

Γφ→γf0
Γφ,tot

, 10−4 4.40∗ 2.31 4.63 1.4 4.92±0.07 4.92±0.07 4.40±0.21
Γφ→γf0
Γφ→γa0

2.64 1.08 2.17 1 0.26±0.06 0.46±0.09 6.1±0.6

Γa0→γγ , keV 0.30∗ 0.383 0.383 0.24 0.28±0.09∗ 0.28±0.09∗ 0.30±10
Γf0→γγ , keV 0.31∗ 0.323 0.62 0.24 0.39±0.13∗ 0.39±0.13∗ 0.31+0.08−0.07

Γa0→γρ, keV 9.1 11.65 11.65 3.4 3.0±1.0 3.0±1.0 −
Γf0→γρ, keV 9.6 0.95 16.6 3.4 19±5 3.3±2.0 −
Γa0→γω, keV 8.7 11.15 11.15 3.4 641±87 641±87 −
Γf0→γω, keV 15.0 7.93 15.85 3.4 126±20 88±17 −

From experiment (Table 3) one obtains about 0.93 for this
ratio.
Another ratio,

Γa0→γρ

Γa0→γω
= 1.043

=

(
M2a0−M

2
ρ

)
M2ρ

(
M2a0−M

2
ω

)
M2ω

∣
∣
∣
∣
∣

Ψ
(
m2K ;M

2
a0
;M2ρ

)

Ψ
(
m2K ;M

2
a0
;M2ω

)

∣
∣
∣
∣
∣

2

,

(54)

has not been measured so far, though theoretical predic-
tions exist. In particular, it was shown [19] that the quark-
loop mechanism in the two-quark model gives a value of
about 1/9, the four-quark structure leads to ≈ 0, while the
kaon-loop mechanism produces almost equal a0→ γρ and
a0→ γω widths. Our result appears to be close to the latter
prediction.
From (40) and (44) it is also possible to derive

Γa0→γρ(ω)

Γφ→γa0
≈ 12 =

3M3φ
M3a0

M2a0−M
2
ρ(ω)

M2φ−M
2
a0

(
M2ρ(ω)

2M2φ

)∣
∣
∣
∣
∣
∣

Ψ
(
m2K ,M

2
a0
,M2ρ(ω)

)

Ψ
(
m2K ,M

2
a0
,M2φ

)

∣
∣
∣
∣
∣
∣

2

.

(55)

The analogous ratio can be deduced from the results
of [16]. It appears to be approximately 5.6. The difference

may be caused by the dissimilarity between the models, in
particular the choice of the mass and the coupling constant
values.
Now, let us focus on the coupling-dependent results cal-

culated according to (31), (32), (36), (37), (40), (41) and
(44)–(46). Tables 5 and 6 show the predictions of the model
and a comparison with the available data. Table 5 presents
the values obtained for cd, cm and θ, and the strong decay
widths for the a0 and f0 mesons.
In Table 6 one can see the results for the radiative de-

cay widths. Column I shows the calculations with our
parameters cd = −6.38MeV, cm = −58.83MeV and θ =
−7.33◦. The entries in Table 6, which were taken as in-
put in the fitting procedure, are marked with an asterisk
(Γφ→γf0/Γφ,tot, Γa0→γγ and Γf0→γγ). Column II is calcu-
lated with an “ideal” mixing angle θ = −35.3◦ (sin θ =
−1/
√
3, cos θ =

√
2/3) as chosen in [36]. In this case the

decay σ = f0(600)→ ππ is forbidden,
3 though in fact it

should be super-allowed. Column III deals with another
“ideal” mixing angle θ = 54.7◦ (cos θ = 1/

√
3 and sin θ =√

2/3). In this case the decay f0(980)→ ππ turns out to
be forbidden, in contradiction with experimental evidence.
Therefore the choices II and III do not look realistic.
For comparison of our results with predictions of other

models we add columns IV, Va and Vb. In particular,
the kaon-loop model [19] (KLM) is selected (column IV),
which is somewhat similar to the present calculation. In

3 In the qq̄ quark model this case corresponds to f0(600) = ss̄.
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columns Va and Vb the predictions of the vector-meson-
dominance (VMD) model [24] (Table I therein) are shown
for two different sets of parameters. The authors apply
a chiral Lagrangian with strong trilinear scalar–vector–
vector interaction.

3.4 Discussion

In this subsection we briefly compare our results with those
of the KLM [19] and VMD [24] models and comment on the
correspondence of the predicted widths to experiment.
As is seen from Table 6, our model, contrary to KLM,

gives not only the rate for the decay of a given type (S→
γγ, S→ γV and φ→ γS groups) but also different decay
rates for the a0 and f0mesons. For some of the channels the
results of KLM are qualitative estimates, corrections [14]
to which should be calculated as discussed in [19]. Never-
theless, our results for S→ γγ and φ→ γS are in agree-
ment with KLM within an order of magnitude. For the
ratio Γa0→γγ/Γφ→γa0 we also get a close value, which ap-
proximately corresponds to the experimental result. At the
same time we obtain the widths for the S→ γV decays that
are larger than the values in the KLM. The latter discrep-
ancy is due to the SU(3) relations for the strong interaction
(see (A.11)), and our couplings of the φ and ρ/ω mesons to
KK̄ turn out to be different from those used in [19].
Regarding the VMD model [24], one can see from

Table 6 that quite big decay widths for S → γω are ob-
tained there compared to our results, while the S → γρ
predictions differ not so much. Note also the large differ-
ence in the values of the ratio Γφ→γf0/Γφ→γa0 .
From the results presented in Tables 5 and 6 one con-

cludes that the predictions for the scalar meson decay
widths are very sensitive to details of the model. There-
fore, the future experiments in which these processes will
be studied may help one to discriminate between different
models of the scalar mesons.
In general, for comparison with experiment, in which

scalar resonances contribute, a more appropriate observ-
able is the invariant mass distribution. As an example con-
sider the reaction e+e−→ γ∗→ ππγ at the CM energy
close to the φ(1020) mass [2]. This reaction allows for the
extraction of the branching ratio:

dBφ→ππγ
dp2

=
1

Γφ,tot

dΓφ→ππγ
dp2

, (56)

where p2 is the two-pion invariant mass squared. Within
the present framework this branching ratio can be calcu-
lated from

dΓφ→ππγ
dp2

=

Γφ→γf0
(
p2
)
Bf0→ππ

(
p2
)
(

−
1

π

)

ImDf0(p
2) . (57)

Here Γφ→γf0(p
2) is the φ→ γf0 decay width (41) for

arbitrary p2, Df0(p
2) = [p2−m2f + imfΓf0,tot(p

2)]−1 is
the scalar-meson propagator and the branching ratio
Bf0→ππ(p

2) = Γf0→ππ(p
2)/Γf0,tot(p

2) relates the f0→ ππ

decay width (32) to the total f0 width Γf0,tot(p
2). A more

advanced form of the propagator including both real
and imaginary parts of the self-energy was suggested re-
cently [37]. The problem of finite resonance width effects in
the invariant mass distributions for π0π0 and π0η in the φ
radiative decays is important [38].
Note also that in [19] (in the appendix) a more general

distribution over invariant masses of both the initial and
final resonances for the S→ γV decays is discussed.
The scalar octet and singlet mixing angle θ appeared to

be a crucial parameter in the fit. We should remark that
a detailed study of the mixing angle was performed in [39]
using the inverse amplitude method. The basic processes in
this reference were elastic ππ, πη, KK̄ and Kη scattering
and the value of the angle was different from our estimate.4

There are also models in which f0 is mainly the singlet
state with θ ≈ 0; for example, an application of the Bethe–
Salpeter equation with a linear confinement qq̄ potential to
the calculation of the scalar-meson mass spectrum [40].
These discrepancies, in our opinion, maybe are not

caused only by differences in the applied models. The prob-
lem may be related to the non-trivial structure and behav-
ior of the light scalar resonances. As was emphasized by
Bugg [8], unification of the observed resonances in elastic
scattering experiments with the corresponding ones seen in
radiative decays is a big challenge. They show up in differ-
ent ways, and it would be important to build a consistent
bridge between these properties of the resonances.

3.5 Possible interactions beyond the model

Comparison of our results with predictions of other models,
especially the results independent of the choice of the cou-
plings, shows that the present model does not allow one
to reproduce the ratio Γa0→γρ/Γa0→γω = 1/9, which is ob-
tained in the qq̄ model and the quark-loop mechanism [19],
or Γa0→γρ/Γa0→γω ≈ 0 in the qqq̄q̄ model [19]. The present
model is insensitive to the structure of the scalars.
At this point one can think of a direct (or contact) coup-

ling of the scalars to two photons as an extension of the
present model. Similar terms were introduced in [36] and
have the orderO(p4):

L1 = g
〈
Soctfµν+ f+µν

〉
+ g′Ssing

〈
fµν+ f+µν

〉
, (58)

where g and g′ are coupling constants and fµν+ is defined
in (A.6).
Analogously, constructing the C and P invariant terms

with Vµν one can propose the SγV interactions

L2 = g
′′
〈
Soctfµν+ Vµν

〉
+ g′′′Ssing

〈
fµν+ Vµν

〉
, (59)

which are bilinear in the resonance fields. The Lagran-
gian (59) has the order O(p2) and contains two more cou-
plings g′′ and g′′′. Of course, these terms do not violate the
chiral symmetry. The four additional coupling constants g,
g′, g′′ and g′′′ should be fixed from certain observables.

4 The definition of the mixing angle in [39] is also different.
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In our opinion, the Lagrangians (58) and (59) can be
useful in phenomenological descriptions of the scalar ra-
diative decays. They may represent effects related to the
specific quark structure of the scalar mesons, which is not
accounted for in the chiral Lagrangian LB of (B.1). This
aspect lies beyond the scope of the present paper.

4 Conclusions

Within ChPT with vector and scalar mesons [25] we have
calculated the radiative decays a0→ γγ, f0→ γγ, φ→ γa0
and φ→ γf0. These decays and the corresponding invari-
ant mass distributions can be measured in e+e− annihi-
lation in Frascati by KLOE [21, 41] and Novosibirsk with
VEPP-2000.
The derivative and non-derivative couplings of the

scalar mesons to the pseudoscalar ones are consistently
included. The gauge invariance of the amplitudes and can-
cellation of the divergences from various diagrams are
explicitly demonstrated. The amplitudes obtained are fi-
nite without counter terms. For the φ decays, in addition,
we used the relation FV = 2GV between the electromag-
netic and strong couplings of the vector mesons in order
to get rid of the divergences. This relation was previously
discussed in [30] in connection with alternative approaches:
hidden local gauge symmetry [28] and massive Yang–Mills
models [29]. Note that this relation does not follow from
chiral symmetry but does not contradict it either [30].
The scalar flavor singlet–octet mixing angle θ is ob-

tained from the fit, as well as estimates for the octet chiral
couplings cm and cd. It should be noted that the values
of these parameters strongly correlate with the mixing
angle.
For the flavor singlet couplings c̃d,m we relied on the re-

lations c̃d,m = cd,m/
√
3 in the large-Nc limit [25]. One may

argue on whether the large-Nc consideration is applicable
to scalar mesons, especially in view of unitarized ChPT
results [18]. In this connection, a fit without any large-Nc
restriction would be an extension of the present approach.
However, difficulties related to the fitting procedure may
arise; in particular, two more free parameters c̃d,m appear,
and in view of the scarce experimental data a non-trivial
procedure is needed to reduce the ambiguities in the re-
sults.
In the present model we obtained the widths of the

a0(980) and f0(980) decays: Γa0,tot = 17.8MeV, Γa0→πη =
14.2MeV and Γf0→ππ = 41.8MeV. Many of the calculated
observables are in satisfactory agreement with experiment.
At the same time the calculated ratio Γφ→γf0/Γφ→γa0 =
2.64 only qualitatively agrees with the experimental value
6.1. The results of the present approach are also com-
pared with those of the previously developed kaon-loop
model [19] and the vector-meson-dominance model [24].
Predictions for the widths of the a0(980) and f0(980)

decays into γρ(770) and γω(782) are also given (see
Table 6). The processes, to our opinion, are of interest for
the experimental programs in Jülich with COSY [20] and
Frascati with DAΦNE (or its upgrade) [42, 43].

Within the present model and the one-loop approxi-
mation, we found several ratios of the widths, which are
independent of the couplings constants. Namely, Γa0→γγ/
Γφ→γa0 = 0.422, which is in qualitative correspondence
with experiment, and Γa0→γρ/Γa0→γω = 1.043 and
Γa0→γρ(ω)/Γφ→γa0 ≈ 12, which have not been tested ex-
perimentally yet.
Our calculations show that many predictions are in

agreement with experiment, and therefore support the as-
sumption that a0(980) and f0(980) fit in the lightest scalar
meson nonet. However, it is difficult to make an unambigu-
ous conclusion.
The present work makes a solid ground for further

studies of the scalar mesons, not only the lightest ones,
a0(980) and f0(980). The model can be applied in pro-
cesses of two-photon production of hadronic states with
intermediate scalar resonances. These processes occur
in nucleon–nucleon and electron–positron collisions (like
e+e−→ e+e−π+π−).
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Appendix A: Chiral Lagrangian for
pseudoscalar and vector mesons

In the calculations we use the O(p2) ChPT Lagrangian
for the pseudoscalar mesons Φ, and the vector mesons and
photons, derived by Ecker et al. [25], where spin-1 mesons
are described by antisymmetric tensor fields V νµ. This
Lagrangian has a O(p4) chiral power in the sense of its
equivalence to the ChPT Lagrangian, in which no explicit
resonances are introduced [25, 30]. In the present problem
it is sufficient to keep

LA =
f2π
4

〈
DµUD

µU†+χU†+χ†U
〉
−
1

4
FµνF

µν

−
1

2
〈∇λVλµ∇νV

νµ−
1

2
M2V VµνV

µν〉

+
FV

2
√
2

〈
Vµνf

µν
+

〉
+
iGV√
2
〈Vµνu

µuν〉 , (A.1)

where 〈· · ·〉 stands for the trace in flavor space. The pion
weak decay constant is fπ ≈ 92.4MeV, and FV and GV
are coupling constants. The electromagnetic field Bµ is in-
cluded as an external source, and Fµν = ∂µBν −∂νBµ is
the electromagnetic field tensor. The quark mass matrix,

χ= 2B0diag(mu,md,ms) , (A.2)
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is expressed in terms of the light quark (qu, qd, qs) masses
and the chiral condensate: 〈0|q̄uqu|0〉=−f2πB0 (1+O(mq)).
In the limit of exact isospin symmetry χ= diag

(
m2π,m

2
π,

2m2K−m
2
π

)
. The terms in the Lagrangian relevant for the

scalar meson sector are discussed in Appendix B, and they
are denoted as LB in the present paper.
The pseudoscalar meson nonet (JP = 0−) contains the

8flavor octet of Goldstone bosons and the 1flavor singlet,
namely the η0 field. We combine singlet and octet into
a nonet following [45, 46]. Thus the flavor SU(3) multiplet
for the pseudoscalar mesons is

Φ=
1
√
2
(π1λ1+π2λ2+π3λ3+K1λ4

+K2λ5+K3λ6+K4λ7+η8λ8+η0λ0) , (A.3)

where λa (a = 1, ..., 8) are the Gell-Mann matrices, λ0 =√
2
3 1, and the physical fields are defined as

π± =
1
√
2
(π1∓ iπ2) , K± =

1
√
2
(K1∓ iK2) ,

K0 =
1
√
2
(K3− iK4) , K̄0 =

1
√
2
(K3+ iK4) ,

π0 = π3 . (A.4)

Of course such a scheme is only approximately well defined
if the U(1) axial anomaly is neglected. We do not omit the
problematic η meson within the present approach, as it is
involved in the dominant decay of the a0 meson, a0→ πη.
For η–η′ mixing we choose the two-parameter scheme [47]:

η = cos θ8η8− sin θ0η0 ,

η′ = sin θ8η8+cos θ0η0 . (A.5)

Note that η and η′ are not orthogonal states. The angles
θ0 =−9.2◦ and θ8 =−21.2◦ are discussed and determined
in [47, 48] from experiment.
Further, fµν+ in (A.1) for the external electromagnetic

field reads

fµν+ = eF
µν(uQu++u+Qu) , (A.6)

where

u≡ U1/2 = exp

(
iΦ
√
2fπ

)

(A.7)

carries a non-linear parametrization of the pseudoscalar
field. The quark charge matrix is

Q≡ diag

(
2

3
,−
1

3
,−
1

3

)

=
1

2
λ3+

1

2
√
3
λ8 ,

and the electron charge is e=
√
4πα≈ 0.303.

The definition of DµU , ∇νV νµ and uν in (A.1) can be
found in the original work [25].
From LA (A.1) the following interactions for the physi-

cal fields in order O(p2) can be produced [44]:

LγPP =−ieBµ

(

π+
↔
∂µ π

−+K+
↔
∂µ K

−

)

, (A.8)

LγγΦΦ = e
2BµBµ(π

+π−+K+K−) , (A.9)

Fig. 6. TheO(p2) vertices from the chiral Lagrangian LA (A.1).
The dash line stands for the kaon, the double solid line for the
vector meson φ, the wavy line for the photon

where for any a and b the notation a
↔
∂µ b≡ a∂µb− b∂µa is

introduced. We have

LγV = eFV F
µν

(
1

2
ρ0µν +

1

6
ωµν−

1

3
√
2
φµν

)

,

(A.10)

LV PP = i
GV

f2π

[
ρ0µν(2∂

µπ+∂νπ−+∂µK+∂νK−)

+ωµν
(
∂µK+∂νK−

)

+φµν
(
−
√
2∂µK+∂νK−

)]
, (A.11)

LγV PP =−
eFV

f2π
∂µBνρ0µνπ

+π−

−
eFV

2f2π
∂µBν

(
ρ0µν +ωµν−

√
2φµν

)
K+K−

−
2eGV
f2π
Bνρ0µν

(
π+∂µπ−+π−∂µπ+

)

−
eGV

f2π
Bν

(
ρ0µν +ωµν−

√
2φµν

)

×
(
K+∂µK−+K−∂µK+

)
. (A.12)

From these terms one can derive the O(p2) vertex func-
tions shown in Fig. 6.
The chiral couplings FV and GV can be extracted

from the vector meson partial widths [25, 44]. From (A.10)
and (A.11) one calculates the following decay widths:

Γρ→ππ =
G2V
48πf4π

(
M2ρ −4m

2
π

)3/2
, (A.13)
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Table 7. Values of the electromagnetic coupling constants for the vector mesons

ρ0 ω φ

Γρ→e+e− , keV FV (MeV) Γω→e+e− , keV FV (MeV) Γφ→e+e− , keV FV (MeV)
7.02±0.11 156.162 0.60±0.02 137.629 1.27±0.04 161.629

Γρ→µ+µ− , keV FV (MeV) Γω→µ+µ− , keV FV (MeV) Γφ→µ+µ− , keV FV (MeV)
6.66±0.20 152.358 0.76±0.26 154.98 1.21±0.08 157.738

Table 8. Values of the vector-meson coupling to the two pseu-
doscalar mesons (all values are in MeV)

π+π− K+K− K0K̄0

ρ0 exp. width: 146.4 − −
GV : 65.183 − −
2 GV : 130.366 − −

ω exp. width: 0.144 − −
(suppressed)

φ exp. width: − 2.096 1.448
GV : − 53.09 54.45
2 GV : − 106.18 108.9

Γρ→e+e− =
e4F 2V
12πMρ

. (A.14)

For the decays φ→KK, ω→ e+e− and φ→ e+e− one has
to take into account the SU(3) relations for the strong and
electromagnetic couplings implemented in (A.8)–(A.12).
Tables 7 and 8 show the values for GV and FV that are ob-
tained from the experimental widths.
The condition FV = 2GV is important for amplitudes to

converge (see Sect. 2.3). From Tables 7 and 8 one sees that
this relation is satisfied only approximately, and the closest
values are obtained from (A.13) and (A.14) for the decays
ρ→ π+π− and ρ→ e+e−.

Appendix B: Chiral Lagrangian for light scalar
mesons

The O(p2) ChPT Lagrangian, which explicitly incorpo-
rates the scalar mesons and their interactions with the
pseudoscalars reads [25]

LB = cd
〈
Soctuµu

µ
〉
+ cm

〈
Soctχ+

〉

+ c̃dS
sing 〈uµu

µ〉+ c̃mS
sing 〈χ+〉 , (B.1)

and χ+ = u
+χu++uχu. For definitions see Appendix A

and [25].
The scalar octet Soct and singlet Ssing have the a pri-

ori independent couplings cd and cm, and those with hats
c̃d and c̃m. The numerical values of these couplings are de-
termined by the underlying QCD. However, it is difficult
to find cd, cm, c̃d and c̃m at energies about 1 GeV because
of the non-perturbative regime of QCD. From the assump-
tion of a large number of quark colors (Nc→∞) it was

shown [25] that the octet and singlet (with “tilde”) chiral
couplings obey the relations

c̃m = µ
cm√
3
, c̃d = µ

cd√
3
, µ=±1 . (B.2)

The applicability of (B.2) to the scalar meson radiative
decays gives rise to some doubts (see [18], for instance).
Anyway we use these constraints to reduce the number of
independent parameters in Sect. 3.1.
For the description of the scalar meson radiative decays

we expand uµ in (B.1) in a series in Φ. The O(p2) interac-
tion with the scalar mesons is defined by

LB = LChPToctet +L
ChPT
singlet , (B.3)

LChPToctet =
2cd
f2π

〈
Soct∂µΦ∂

µΦ
〉

− i
2ecd
f2π
Bµ

〈
Soct{∂µΦ, [Q,Φ]}

〉

−
2e2cd
f2π
BµBµ

〈
Soct[Q,Φ]2

〉

−
cm

f2π

〈
SoctΦ{χ,Φ}

〉
+
2cm
f2π

〈
Soctχ

〉
,

LChPTsinglet =
2c̃d
f2π
〈∂µΦ∂

µΦ〉Ssing

+ i
4ec̃d
f2π
Bµ 〈∂µΦ, [Q,Φ]〉S

sing

−
2e2c̃d
f2π
BµBµ

〈
[Q,Φ]2

〉
Ssing

−2
c̃m

f2π

〈
χΦ2

〉
Ssing+

2c̃m
f2π
〈χ〉Ssing .

Apparently the Lagrangian (B.3) does not yield a direct
contact coupling of the scalar meson to two photons.
In order to apply (B.3) to the physical scalar fields one

has to assume a certain multiplet decomposition, (1). This
has to be consistent with phenomenology. The prominent
feature of a0 is its dominant decay to πη. KLOE [1] showed
almost no contribution of the f0(980) resonance in com-
parison with a0(980) in the reaction φ(1020)→ γπ0η. Thus
we suppose that the isovector a0(980) and the isoscalar
f0(980) do not mix. Violation of isospin conservation, re-
lated to a possible a0–f0 mixing, is a subject for a separate
work. This issue can be studied for example by means of
the dd→ (4Hea00→)

4Heπ0η reaction at COSY [49].
As far as we are interested in physical scalar fields,

which are combinations of singlet and octet states, it is con-
venient to introduce effective couplings gS··· constructed
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Table 9. Effective couplings and their chiral powers for the
scalar mesons

gfππ = −m
2
π

(
4c̃m cos θ−2

√
2/3cm sin θ

)
,

gfηη = −(4/3)c̃m
(
4m2K −m

2
π

)
cos θ

−2
√
2/
(
3
√
3
)
cm
(
8m2K −5m

2
π

)
sin θ) , O(p2)

gfKK = −m
2
K

(
4c̃m cos θ+

√
2/3cm sin θ

)
.

ĝfππ = 4c̃d cos θ−2
√
2/3cd sin θ ,

ĝfηη = 4c̃d cos θ+2
√
2/3cd sin θ , O(p0)

ĝfKK = 4c̃d cos θ+
√
2/3cd sin θ .

gσππ = −m2π
(
4c̃m sin θ+2

√
2/3cm cos θ

)
,

gσηη = −(4/3)c̃m
(
4m2K −m

2
π

)
sin θ

+2
√
2/
(
3
√
3
)
cm
(
8m2K −5m

2
π

)
cos θ) , O(p2)

gσKK = −m
2
K

(
4c̃m sin θ−

√
2/3cm cos θ

)
.

ĝσππ = 4c̃d sin θ+2
√
2/3cd cos θ ,

ĝσηη = 4c̃d sin θ−2
√
2/3cd cos θ , O(p0)

ĝσKK = 4c̃d sin θ−
√
2/3cd cos θ .

gaKK = −
√
2cmm

2
K , O(p2)

gaπη = −2Z
√
2/3cmm

2
π .

ĝaKK =
√
2cd , O(p0)

ĝaπη = 2Z
√
2/3cd .

from the constants cd, cm, c̃d and c̃m. This allows one to
rewrite the Lagrangian in a simpler form.
Let S stand for any scalar field, a0,f0 or σ, and P for

a pseudoscalar
→
π= π0, π± or K±, K0 and K̄0. Then the

Lagrangian (B.3) can be reduced to

LB =
1

f2π

∑

S

S
[gSππ

2

→
π
2
+
gSηη

2
η2+ gSπηπ

0η

+ gSKK(K
+K−+(−1)ISK0K̄0)+ (ĝSππ/2)(∂µ

→
π )2

+(ĝSηη/2)(∂µη)
2+ ĝSπ0η∂µπ

0∂µη

+ ĝSKK(∂µK
+∂µK−+(−1)IS∂µK

0∂µK̄0)

+ gSγππeBµπ
+
↔
∂µ π

−+ gSγKKeBµK
+
↔
∂µ K

−

+gSγγππe
2BµB

µπ+π−+ gSγγKKe
2BµB

µK+K−
]
,

(B.4)

where IS = 0 for f0, σ and IS = 1 for a0. We introduced the
effective couplings gSππ, gSηη, etc., listed in Table 9. The
couplings that are absent in Table 9 are equal to zero. In
addition, for any scalar meson S the following relations for
the electromagnetic couplings hold:

gSγππ =−iĝSππ ,

gSγKK =−iĝSKK ,

gSγγππ = ĝSππ ,

gSγγKK = ĝSKK . (B.5)

Fig. 7. The O(p2) vertices corresponding to the Lagrangian
(B.4). The dotted line stands for the scalar meson S, the dashed
line for the pseudoscalar P . Couplings are shown in Table 9; see
also (B.5)

Note also that

Z =
cos θ0−

√
2 sin θ8

cos(θ8− θ0)
≈ 1.53 , (B.6)

where the denominator in Z is equal to the determinant of
the transition matrix (A.5) from (η8, η0) to (η, η

′).
The Lagrangian (B.4) leads to the vertices shown

in Fig. 7.
Table 9 shows the expressions for the effective couplings

as well as the corresponding chiral powers. Some of the cou-
plings include the masses of the Goldstone bosons and are
O(p2), while the other ones areO(p0). Of course, each term
in the Lagrangian (B.4) carries a power O(p2).
Let us now make a remark on the relation between the

sign of the parameter µ in (B.2) and the scalar-meson mix-
ing angle θ in (1). As long as the present consideration
does not involve the σ meson we can drop the relation
for σ in (1) and observe a non-trivial property: the change
µ→−µ is equivalent5 to the change θ→ π− θ.

Appendix C: Modifications of the model
for virtual photons

The complete set of O(p4) diagrams has to incorporate all
contributions determined by theO(p4) Lagrangians (A.8)–
(A.12) and (B.4). The Lagrangian (A.10) generates the
electromagnetic form factors (FFs) for pseudoscalar par-
ticles inside the loops. These FFs should replace the tree-
level PPγ vertices marked by arrows in Fig. 1, if the FFs
do not increase the chiral power of a diagram, and they are
calculated from the O(p4) Lagrangian.
Note that the electromagnetic FFs of kaons and pi-

ons have been studied in various approaches (let us just
mention the considerations for on-mass-shell pions [50, 51]
and kaons [44]). The FF calculated from the ChPT La-
grangian includes a direct photon–vector-meson transi-
tion, i.e. vector-meson dominance, as well as the ordinary

5 This equivalence is reflected in Table 4.
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Fig. 8. The O(p2) electromagnetic vertex of the (off-mass-
shell) pseudoscalar meson in ChPT. All possible intermediate
vector resonances V = ρ0, ω, φ, . . . in general contribute. For
real photons only the first term on the r.h.s. is non-zero

contact interaction (see the illustration in Fig. 8 and Ap-
pendix A). Fortunately, the real photons do not couple to
vector mesons within this approach (see, e.g., [44] for a dis-
cussion of this and the one-loopmodification of the electro-
magnetic vertex). Therefore, as long as one is interested in
processes with real photons, there are noO(p4) diagrams in
addition to those shown in Fig. 1, and therefore Fig. 1 gives
the complete set of diagrams in this order. A similar rea-
soning applies to the consideration of the diagrams shown
in Fig. 2 and Fig. 3 for φ→ γa0/f0 and f0/a0→ γρ/ω de-
cay, respectively.

Appendix D: Dimensional regularization.
Loop integrals

In the calculation of loop integrals, we use the dimen-
sional regularization method (see, for instance, § 7 and Ap-
pendix B in [52]).
The dimension of space-timeD= 4−2ε in the limit ε→

0 corresponds to that of 4-dimensionalMinkowski space. In
the text this limit is assumed in all expressions. The inte-
grationmeasure for 4-dimensional space is replaced by that
for D-dimensional space: d4q→ (Λ2)εdDq, where the ar-
bitrary regularization parameter Λ has the units of mass.
Integrals with this measure are defined via analytical con-
tinuation from a space with an integer number of dimen-
sions. The metric tensor obeys the condition gµνgµν =D.
The Dirac matrices satisfy the anti-commutation relations

Table 10. Table of typical D-dimensional integrals (for any
vector Qµ and complex number R)

Λ2ε
∫ dDl
(2π)D

1
l2+R = −iR

(4π)2

[
Iε+1− ln(−RΛ2 )

]
,

Λ2ε
∫ dDl
(2π)D

{1,lµlν}
(l2−2l·Q+R)2 = {1, QµQν} i

(4π)2

×
[
Iε− ln

(
Q2−R
Λ2

)]

+{0, gµν} i
32π2

(Q2−R)

×
[
Iε+1− ln

(
Q2−R
Λ2

)]
,

Λ2ε
∫
dDl
(2π)D

{1,lα,lαlβ ,lαlβlν}
(l2−2l·Q+R)3 = −i

2(4π)2
{1,Qα,QαQβ ,QαQβQν}

Q2−R

+ i
4(4π)2

[
Iε− ln

(
Q2−R
Λ2

)]

×{0, 0, gαβ , (gαβQν

+gανQβ+ gνβQα)} ,

{γµ, γν} = 2gµν . Here γµγµ =D, and the ordinary trace
formulae are generalized to Tr(γµγν) = 2D/2gµν , etc.
In a calculation of the loop diagrams the typical inte-

grals presented in Table 10 arise. For divergent terms we
define

Iε = 1/ε−γε+ln4π .

The Euler–Mascheroni constant γε ≈ 0.57721566490 can
be expressed in terms of the gamma-function derivative:
γε =−Γ ′(1) =−

∫∞
0 dx exp (−x) lnx.
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